A categorical framework for the quantum harmonic oscillator

نویسنده

  • Jamie Vicary
چکیده

This paper describes how the structure of the state space of the quantum harmonic oscillator can be described by an adjunction of categories, that encodes the raising and lowering operators into a commutative comonoid. The formulation is an entirely general one in which Hilbert spaces play no special role. Generalised coherent states arise through the hom-set isomorphisms defining the adjunction, and we prove that they are eigenstates of the lowering operators. Surprisingly, generalised exponentials also emerge naturally in this setting, and we demonstrate that coherent states are produced by the exponential of a raising morphism acting on the zero-particle state. Finally, we examine all of these constructions in a suitable category of Hilbert spaces, and find that they reproduce the conventional mathematical structures.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Super algebra and Harmonic Oscillator in Anti de Sitter space

The harmonic oscillator in anti de Sitter space(AdS) is discussed. We consider the harmonic oscillator potential and then time independent Schrodinger equation in AdS space. Then we apply the supersymmetric Quantum Mechanics approach to solve our differential equation. In this paper we have solved Schrodinger equation for harmonic oscillator in AdS spacetime by supersymmetry approach. The shape...

متن کامل

An optimal analytical method for nonlinear boundary value problems based on method of variation of parameter

In this paper, the authors present a modified convergent analytic algorithm for the solution of nonlinear boundary value problems by means of a variable parameter method and briefly, the method is called optimal variable parameter method. This method, based on the embedding of a parameter and an auxiliary operator, provides a computational advantage for the convergence of the approximate soluti...

متن کامل

Numerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method

‎The controlled harmonic oscillator with retarded damping‎, ‎is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems‎. ‎In this paper‎, ‎to solve this problem‎, ‎we presented an analytical method‎. ‎This approach is based on the homotopy perturbation method‎. ‎The solution procedure becomes easier‎, ‎simpler and mor...

متن کامل

Periodic Solutions of the Duffing Harmonic Oscillator by He's Energy Balance Method

Duffing harmonic oscillator is a common model for nonlinear phenomena in science and engineering. This paper presents He´s Energy Balance Method (EBM) for solving nonlinear differential equations. Two strong nonlinear cases have been studied analytically. Analytical results of the EBM are compared with the solutions obtained by using He´s Frequency Amplitude Formulation (FAF) and numerical solu...

متن کامل

Gazeau- Klouder Coherent states on a sphere

In this paper, we construct the Gazeau-Klauder coherent states of a two- dimensional harmonic oscillator on a sphere based on two equivalent approaches. First, we consider the oscillator on the sphere as a deformed (non-degenerate) one-dimensional oscillator. Second, the oscillator on the sphere is considered as the usual (degenerate) two--dimensional oscillator. Then, by investigating the quan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007